系介绍 |
系领导 |
姓名:林健
职称:教授
电子邮箱:lin_jian@tongji.edu.cn
办公地点:同济大学嘉定校区,德才馆508室
电话:69582117
传真:
个人简介:
1964年10月出生,浙江杭州人。1986年毕业于华东理工大学无机材料系。工学博士,教授、博士生导师;现任中国硅酸盐学会特种玻璃分会理事、上海市硅酸盐学会新能源材料分会理事。
长期从事无机功能材料、纳米材料和光功能材料等方面的教学、科研工作。先后承担“硅酸盐物理化学”、“材料研究方法”(国家精品课程)、“信息功能材料”、“汽车传感器材料与技术”、“材料概论”、“无机功能材料”等本科及研究生课程的教学工作,积累了丰富的教学经验。
先后开展玻璃工业生产优化控制、泡沫玻璃与微晶玻璃材料研究、固态废弃物综合利用研究、氧化物基玻璃的发光与非线性光学性能研究、生物玻璃材料、纳米颗粒与纳米膜材料研究、金属纳米晶表面增强荧光及拉曼性能研究、车用氧传感器材料研究等工作,承担十三五国家重点研发计划、国家自然科学基金、上海市科委及企业合作等科研项目数十项,在光学材料、纳米材料、传感器材料及玻璃工业生产技术领域积累了丰富的经验。迄今已培养了四十余名博、硕士研究生。
迄今先后在国内外学术期刊上发表论文150余篇,编有《信息材料概论》、《材料研究方法》等教材,拥有国家发明专利10余项。
部分论文:
1.Crystallization of TeO2–Nb2O5glasses and theirnetwork structural evolution. Mat. Sci. Poland, 2009, 27(1): 329-338.
2.Preparation of TeO2 based thin films by nonhydrolytic sol–gelprocess. Mat. Sci. & Eng. B, 2009, 164: 51–59.
3.Enhancement of up-conversion luminescence from Er3+-Yb3+-codopedtellurite films by Ag nanoparticles embedded in glass substrates. Mat. Sci.& Eng. B, 2010, 172: 321–326.
4.Preparation of Ag nanocrystals embedded silicate glass by field-assisteddiffusion and its properties of optical absorption. Solid State Sciences, 2010,12: 1413-1418.
5.Optical properties of Ag nanoparticle embedded silicate glass prepared byfield-assisted diffusion. Appl. Phys. A, 2011, 102: 521–525.
6.Plasmon-enhanced luminescence of YAG:Yb,Er nanopowders by Ag nanoparticlesembedded in silicate glass. Mat. Lett., 2011, 65: 282–284.
7.Preparation of Ag nanocomposite tellurite glass by solid-state field-assisteddiffusion. J. Electron. Mat., 2012, 41(4): 646-650.
8.Luminescence enhancement of fluorescent labeling molecular by Ag nanoparticlesembedded in silicate glass substrates. Nano-Micro Letters, 2011, Proceedings ofShanghai International Nanotechnology Cooperation Symposium: 157-163.
9.Fluorescence enhancement of fluorescently labelled substance by Agnanoparticles embedded in silicate glass substrates. Mat. Res. Innovations,2013, 17(7): 458.
10.Preparation of glass-ceramic foams from the municipal solid waste slag producedby plasma gasification process. Materials Letters, 2014, 128: 68-70.
11.Stability, glass forming ability and spectral properties of Ho/Yb co-doped TeO2-WO3-ZnX(X=O/F2/Cl2)system. Opt. Mat., 2014; 36:1013-1019.
12.Enhanced 2–5μm emission in Ho3+/Yb3+codoped halidemodified transparent tellurite glasses. Spectrochimica Acta Part A: Molecularand Biomolecular Spectroscopy 2015; 134:388-98.
13.Radiative transition, local field enhancement and energy transfer microcosmicmechanism of tellurite glasses containing Er3+, Yb3+ionsand Ag nanoparticles. J. Quantitative Spectroscopy & Radiative Transfer,2015; 159:39-52.
14.SERS-active Ag nanoparticles embedded in glass prepared by a two-step electricfield-assisted diffusion. Optical Materials 2015; 39:97-102.
15.Effect of electric field-assisted diffusion on surface layer structure and mechanicalproperties of soda-lime glasses. Journal of Wuhan University ofTechnology-Mater. Sci. Ed. 2015, 30(3): 452-456.
16.Surface enhanced Raman scattering substrates based on titanium nitridenanorods. Optical Materials. 2015, 47: 219-224.
17.Efficient perovskite solar cells using trichlorosilanes as perovskite/PCBMinterface modifiers. Organic Electronics, 2016, 39: 1-9.
18.An optical investigation of silver nanoclusters composite soda-lime glass formedby electric field assisted diffusion. Journal of Wuhan University ofTechnology-Mater. Sci. Ed., 2017, 32: 338-344.
19.Preparation of a novel three-dimensional TiO2 macroporous/TiO2nanorods/Ag nanoparticles composite nanostructure and its use as SERS substrates.NANO,2017, 12(5): 1750052.
20.Mutual composition transformations among 2D/3D organolead halide perovskitesand mechanisms behind. Sol. RRL 2018, 1800125.
21.A new organic-inorganic bismuth halide crystal structure and quantum dot bearinglong-chain alkylammonium cations. Organic Electronics, 2019, 70: 155-161.
22.Chlorobenzene: a processing solvent enabling the fabrication of perovskite solarcells with consecutive double-perovskite and perovskite/organic semiconductor bulkheterojunction layers. Sol. RRL, 2019, 3: 1800325.
23.Effects of Fe2O3 on the properties of glass foams preparedby iron-containing solid waste. Glass Physics and Chemistry, 2019, 45(2): 104–110.
部分专利:
1.CN104743878A:一种微晶板制品及其制备方法
2.CN103420612A:一种利用生活垃圾制备有机物干料及无机物配合料、制备微晶泡沫玻璃材料的方法
3.CN103342464A:一种含银纳米晶体蓝光增强碲酸盐玻璃及其制备方法
4.CN103073185A:一种低氧化硅含量泡沫玻璃及其制备方法
5.CN101812299A:纳米晶增强稀土掺杂碲酸盐发光膜材料及其制备方法
6.CN102126834A:一种用于发光薄膜荧光增强的光学玻璃基片及其制备方法
7.CN101482536A:自动充氧型固体参比氧传感器
8.CN101373222A:一种纳米晶增强图形化发光复合膜的制备方法
9.CN101261443A:一种纳米晶体图形转印的方法及纳米晶体图形材料
10.CN1556053A:一种可控分布的纳米晶及微晶玻璃的制备方法
11.CN2675665Y:一种可控分布的纳米晶及微晶玻璃的制备装置
12.CN1544368A:碲铌基玻璃及其制备方法、用途
技术支持:维程互联