首页|系概况|科研工作|师资队伍|教学工作|新闻中心|返回学院|同济首页

讲师

姓名:王海
职称:讲师
电子邮箱:hwang@tongji.edu.cn

办公地点:德才馆417室
电话:18721870717
传真:021-39947690
课题组主页:

 

工作经历:

2011年1月-至今          同济大学,材料科学与工程学院
2007年9月-2010年12月   香港理工大学,应用物理系,博士后  


教育背景:  

2002年9月-2007年7月 哈尔滨工业大学航天学院,工程力学  博士学位
2000年9月-2002年7月 哈尔滨工业大学材料学院,材料学  硕士学位
1996年9月-2000年7月 哈尔滨工业大学材料学院,材料成型及控制工程  学士学位  


专业技能:  

独立的科研能力:洞察前沿,提出科研课题,规划解决方案
熟练的英文阅读及写作能力:易于接受先进理念及创造新知识
具有扎实的材料学、物理及化学功底,以及开阔的视野
具有Fortran 90和Shell编程能力,丰富的大规模并行计算经验
管理计算机集群系统,熟练使用第一性原理程序,如WIEN2k,VASP,PWSCF
工作刻苦,态度认真,待人真诚,善于合作  


计算机及程序技能:  

操作系统: Linux and Windows
第一性原理程序: WIEN2K, VASP, PWSCF, ABINIT, SIESTA…  


研究领域:  

无铅铁电压电材料 (减少污染,保护环境)
       BiMO3      Bi-基铁电起源,铁电相变研究 [PRB 75 245209 (2007)]
       ZnSnO3     新型无铅压电材料研发        [SSC 149 1849 (2009)]
       Bi2ZnTiO6  B-位复合无铅材料研发        [JAP 105 053713 (2009)]  

 

单相多重铁性材料 (同时具有铁电和铁磁性能,降低器件尺寸)
       BiFeO3     电子及光学性能 [SSC 149 641 (2009)]
       BiFeO3     掺杂 Mn 元素及其影响 [Sci. Adv. Mater. 2 (2010) 184]  

 

铁磁材料
       铁   先前的实验及理论研究表明磁对力学性能有很大的影响,它能改变位错蠕变取向,进而软化弹性剪切模量。同时也导致材料发生BCC-FCC结构转变。实际上,磁的影响是通过磁交换相互作用(exchange interaction),我们已进行了相应的研究。[Phys. Rev. B 82, 144304 (2010)]
      因瓦合金(不变钢,Invar alloy) Fe-Ni, Fe-Cr 合金,具有极小的热膨胀系数。一米长的超不胀钢在温度变化1K时膨胀长度约0.2微米。相应的研究正在进行。  

 

超导材料
      高温超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用如超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。2008年初,日本人发现了铁基超导体,引起了新一轮的全球研究热潮。对超导机理的研究有助于研发更高Tc的超导材料。此外,磁与超导的共存,使得磁的作用在铁基超导体材料中更重要。迄今为止,磁的作用还不清晰。  

      为理解磁有序对三种典型的具有代表性的1111-型 LaFeAsO, 122-型  BaFe2As2 和 111-型 LiFeAs 铁基超导体材料的影响,我设计了巧妙的计算方案,并给出了全面的物理图像. [http://arxiv.org/abs/1005.2121 ]

 

低维热电材料 (热产生电能,用于废热回收)
      BiFeO3   热电性能预报 [手稿准备中]  

 

铁电光伏材料
      普通太阳能材料只能提供非常低的输出电压。最新报道表明,通过畴工程,铁电体能够提供异常大的电压输出。因此铁电光伏在太阳能发电方面具有独特的优势,从而具有诱人的前景。 (Nature Photonics 4, 134-135 (March 2010))。相关的物理图像及机理正在研究。  

 

最近出版物:

 

1.Hai Wang. Giant birefringence in layered compound LaOBiS2. Chin. Phys. Lett., 2014. 31(4):p.047802 http://arxiv.org/abs/1304.5032
2.Hai Wang. Layered compounds AFBiS2: superior birefringent crystals. Chin. Phys. Lett., 2015. 32(1):p.017801 http://arxiv.org/abs/1306.6393
3.Hai Wang. BiS2-layer gives giant birefringence: First-principles calculations. Chin. Phys. Lett., 2016. 33(5):p.057802
4.Huazhi Zeng, Hai Wang,* and Jun Shen. Mechanical properties of TiN coatings studied by nanoindentation and nano-scratch tests. Journal of Vacuum Science & Technology B. 2016. 34(2): 021802-1-6
5.Hai Wang, Huazhi Zeng, Qingkun Li and Jun Shen. Superlattice supertoughness of TiN/MN: First-principle study. Thin Solid Films, Available online 31 March 2016, ISSN 0040-6090, http://dx.doi.org/10.1016/j.tsf.2016.03.061.
全部出版物
6.Liang Zhen, Huie Hu, Hai Wang, T. Imai, Tingquan Lei. High strain rate superplasticity of TiNp/1N90Al composite prepared by powder metallurgy method. Transactions of Nonferrous Metals Society of China, 2005. 15(2): p. 222-226. (IF: 0.445, Times cited: 0)
7.Z.Y. Zhu, B. Wang, H. Wang, Y. Zheng, et al., First-principle study of ferroelectricity in PbTiO3/SrTiO3 superlattices. Solid-State Electronics, 2006. 50(11-12): p. 1756-1760. (IF: 1.494, Times cited: 4) (SCI, EI)
8.H. Wang, B. Wang, R. Wang, and Q.K. Li, Ab initio study of structural and electronic properties of BiAlO3 and BiGaO3. Physica B: Condensed Matter, 2007. 390(1-2): p. 96-100. (IF: 1.056, Times cited: 10) (SCI, EI)
9.H. Wang, B. Wang, Q.K. Li, Z.Y. Zhu, et al., First-principles study of the cubic perovskites BiMO3 (M=Al, Ga, In, and Sc). Physical Review B, 2007. 75(24): p.245209. (IF: 3.475, Times cited: 18) (SCI, EI)
10.C.L. Li, H. Wang, B. Wang, and R. Wang, First-principles study of the structure, electronic, and optical properties of orthorhombic BiInO3. Applied Physics Letters, 2007. 91(7): p. 071902. (IF: 3.554, Times cited: 4) (SCI, EI)
11.C.L. Li, B. Wang, R. Wang, and H. Wang, First-principles studies on the electronic and optical properties of CeCl3 and CeBr3. Solid State Communications, 2007. 144(5-6): p. 220-224. (IF: 1.837, Times cited: 3) (SCI, EI)
12.C.L. Li, B. Wang, R. Wang, H. Wang, et al., First-principles study of structural, elastic, electronic, and optical properties of hexagonal BiAlO3. Physica B-Condensed Matter, 2008. 403(4): p. 539-543. (IF: 1.056, Times cited: 9) (SCI, EI)
13.C.L. Li, B. Wang, R. Wang, H. Wang, et al., First-principles study of structural, elastic, electronic, and optical properties of orthorhombic BiGaO3. Computational Materials Science, 2008. 42(4): p. 614-618. (IF: 1.522, Times cited: 6) (SCI, EI)
14.C.L. Li, B. Wang, R. Wang, H. Wang, et al., First-principles study of the electronic and optical properties of lanthanide bromide. Thin Solid Films, 2008. 516(21): p. 7894-7898. (IF: 1.727, Times cited: 1) (SCI, EI)
15.Q.K. Li, B. Wang, C.H. Woo, H. Wang, et al., First-principles study on the formation energies of intrinsic defects in LiNbO3. Journal of Physics and Chemistry of Solids, 2007. 68(7): p. 1336-1340. (IF: 1.189, Times cited: 4) (SCI, EI)
16.Q.K. Li, B. Wang, Y. Zheng, Q. Wang, H. Wang, et al., First-principles study of the electronic structure and the associated magnetism of carbon-doped TiO2. Physica Status Solidi-Rapid Research Letters, 2007. 1(5): p. 217-219. (IF: 2.560, Times cited: 5) (SCI, EI)
17.Q.K. Li, B. Wang, C.H. Woo, H. Wang, et al., Origin of unexpected magnetism in Cu-doped TiO2. EPL, 2008. 81(1): p.17004. (IF: 2.893, Times cited: 1) (SCI, EI)
18.Z.Y. Zhu, B. Wang, H. Wang, Y. Zheng, et al., The first-principles study of ferroelectric behaviours of PbTiO3/SrTiO3 and BaTiO3/SrTiO3 superlattices. Chinese Physics, 2007. 16(6): p. 1780-1785. (IF: 1.343, Times cited: 5) (SCI, EI)
19.Z.Y. Zhu, B. Wang, Y. Zheng, H. Wang, et al., First-principles study of structural instability and polarization in BaTiO3/SrTiO3 superlattice. Acta Physica Sinica, 2007. 56(10): p. 5986-5989. (IF: 1.003, Times cited: 1) (SCI, EI)
20.D.C. Ma, B. Wang, R. Wang, H. Wang, et al., Influence of post-treatment on optical properties of Sc : Ce : Cu : LiNbO3 crystals. Modern Physics Letters B, 2007. 21(4): p. 207-214. (IF: 0.51, Times cited: 0) (SCI, EI)
21.D.C. Ma, B. Wang, R. Wang, Y. Wei, H. Wang, et al., Growth and optical properties of Zn : Ce : Cu : LiNbO3 single crystals. Solid-State Electronics, 2008. 52(5): p. 644-648. (IF: 1.494, Times cited: 0) (SCI, EI)
22.Wei Lu, Xiaohui Deng, Hai Wang, Haitao Huang, Lianlong He. Electronic structure and chemical bonding of α- and ß-Ta4AlC3 phases: Full-potential calculation. Journal of Materials Research, 2008. 23(9): p.2350-2356. (IF: 1.667, Times cited: 3) (SCI, EI)
23.W. Lu, H. Wang, Y. Hu, H. Huang, and H. Gu, First-principles prediction of the hardness of fluorite TiO2. Physica B: Condensed Matter, 2009. 404(1):79-81. (IF: 1.056, Times cited: 0) (SCI, EI)
24.Hai Wang, Haitao Huang, Wei Lu, Helen L. W. Chan, Biao Wang and C. H. Woo. Theoretical prediction on the structural, electronic and polarization properties of tetragonal Bi2ZnTiO6. Journal of Applied Physics, 2009. 105(5): p. 053713. (IF: 2.072, Times cited: 1) (SCI, EI)
25.Hai Wang, Yue Zheng, Meng-Qiu Cai, Haitao Huang and Helen L. W. Chan. First-principles study on the electronic and optical properties of BiFeO3. Solid State Communications, 2009. 149(15-16): p. 641-644. (IF: 1.837, Times cited: 4) (SCI, EI)
26.Hai Wang, Haitao Huang and Biao Wang. First-principles study of structural, electronic, and optical properties of ZnSnO3. Solid State Communications, 2009. 149 (41-42) : p. 1849-1852 (IF: 1.837, Times cited: 4) (SCI, EI)
27.Hai Wang, Haitao Huang and Biao Wang. Effect of Mn Substitution for Fe in Multiferroic BiFeO3: A First-Principles Study. Sci. Adv. Mater. (Science of Advanced Materials) 2010. 2 (2): p.184-189 (IF: 2.908, Times cited:5)
28.Hai Wang, Pui-Wai Ma and C. H. Woo. Exchange interaction function for spin-lattice coupling in bcc iron. Phys. Rev. B, 2010. 82 (14): p. 144304
29.Hai Wang. Striped-magnetic-order suppresses giant optical anisotropy and drives structural distortion in iron arsenide superconductors.(http://arxiv.org/abs/1005.2121)
30.Xiaohui Deng,Wei Lu, Hai Wang, Haitao Huang and Jiyan Dai. Electronic, magnetic and dielectric properties of multiferroic MnTiO3. J. Mater. Res., 2012. 27(11):p. 1421
31.Hai Wang. Giant birefringence in layered compound LaOBiS2. Chin. Phys. Lett., 2014. 31(4):p.047802 http://arxiv.org/abs/1304.5032
32.Hai Wang. Layered compounds AFBiS2: superior birefringent crystals. Chin. Phys. Lett., 2015. 32(1):p.017801 http://arxiv.org/abs/1306.6393
33.Hai Wang. BiS2-layer gives giant birefringence: First-principles calculations. Chin. Phys. Lett., 2016. 33(5):p.057802
34.Huazhi Zeng, Hai Wang,* and Jun Shen. Mechanical properties of TiN coatings studied by nanoindentation and nano-scratch tests. Journal of Vacuum Science & Technology B. 2016. 34(2): 021802-1-6
35.Hai Wang, Huazhi Zeng, Qingkun Li and Jun Shen. Superlattice supertoughness of TiN/MN: First-principle study. Thin Solid Films, Available online 31 March 2016, ISSN 0040-6090, http://dx.doi.org/10.1016/j.tsf.2016.03.061.
36.Hai Wang, Zhenye Zhu, Wei Lu and Haitao Huang. Why relaxor ferroelectrics have giant dielectric properties: check on BaTaO2N. (2014).
37.Hai Wang, Zhenye Zhu, Chi-Hang Lam and Haitao Huang. Tuning of rhombohedral ferroelectrics for photovoltaics. (2014).
38.Hai Wang. Giant toughness-tunability of TiN/MN superlattices (M=V, Nb and Ta). (Submitted, 2016).
39.Hai Wang. Giant tetragonality induced by its coupling with local polar displacement in Bi-based compounds. (In preparation).
40.Hai Wang. Tunable band gap and ferroelectric properties of Ba-Ti-Zn-Sn-O systems. (In preparation).
41.Hai Wang. Strong coupling among structural, electronic and magnetic ordering in multiferroic BiFeO3: A first-principles study. (In preparation).
42.Hai Wang. Theoretical prediction of large seebeck coefficient in multiferroic BiFeO3. (In preparation).
43.Hai Wang. First-principles study on the lattice dynamics of low-dimensional ferroelectrics. (In preparation).  

技术支持:维程互联